FCC hadron detector meeting

Preliminary studies of boosted hadronic τ leptons and W bosons using high-granularity calorimeter at FCC

by

Sergei Chekanov (ANL),
Donato Farina (Universita degli studi di Napoli Federico II/Fermilab),
Ashutosh Kotwal (Duke/Fermilab),
Sourav Sen (Duke),
Nhan Tran (Fermilab)

Table of Contents

- Introduction
- Designing a high-granularity calorimeter for FCC-hh energies
- Boosted τ → hadrons studies
- Boosted W → dijet studies
- Conclusion

Introduction

- → detection of boosted objects will be important at FCC-hh experiment
 - heavy resonances decaying to WW, ZZ, HH and $\ensuremath{t\bar{t}}$ well-motivated in many BSM models
- → detecting hadronic τ decays from H → ττ could also be important for reconstructing di-τ and di-higgs resonances
- → preliminary studies of hadronic τ identification variables from simulated Z' (1 TeV) → $\tau\tau$ events are presented
- → preliminary studies of jet response and resolution for boosted
 W → dijets from Z'(10 TeV) → WW simulation are also presented

A framework for boosted particle studies

- Using HepSim public repository with EVGEN and full simulations
 - http://atlaswww.hep.anl.gov/hepsim/
- •EVGEN Madgraph files were created with MG5/Pythia6
- •Files are being processed with a full detector simulation which includes highgranularity calorimeter (1x1 cm cell size in HCAL)
- Detector geometry can be changed using XML files

Designing a high-granularity calorimeter for FCC-hh energies

SiD detector

A multi-purpose detector for ILC

- The key characteristics:
 - 5 Tesla solenoid & silicon tracker
 - 3.5 mm cell size for ECAL
 - Tungsten absorber
 - silicon sensors
 - 10x10 mm cell size for HCAL :
 - Steel absorber
 - RPC sensors
 - 40 layers for barrel (HCAL)

Optimized for particle-flow algorithms.

Designing a detector for TeV-scale boosted physics

SiD detector was designed for ~500 GeV jets

SiD

A FCC-like detector for studies of CAL transverse and longitudinal granularity, depth, material, magnetic fields, pixel sizes etc, responses to particles etc.

Designing a Geant4 simulation for high-granularity calorimeter (1 cm \times 1 cm) with 12 λ to contain 20-30 TeV jets

S. Chekanov (ANL), Norman Graf (SLAC), Lindsey Gray (Fermilab), A. Kotwal (Fermilab/Duke), Jeremy McCormick (SLAC), Sourav Sen (Duke), J. Strube (PNNL), N. Tran (Fermilab), S-S. Yu (NCU Taiwan)

A typical response to 1000 GeV single pion

Pandora Particle Flow algorithm reconstructs 1000 GeV single pion

Boosted $\tau \rightarrow$ hadrons studies

Sample: Z'(1TeV) → ττ (19980 events)

Sanity Check

MC level

Detector level:

The one prong can further be improved by π^0 recontruction

$\tau_{\text{had-vis}}$ identification variables

Reference:

ATLAS collaboration. "Identification and energy calibration of hadronically decaying tau leptons with the ATLAS experiment in pp collisions at \sqrt{s} = 8 TeV." arXiv preprint arXiv:1412.7086 (2014).

Core=0.1, Isolation region=0.4

 f_{cent} (Central energy Fraction)= (total E_{T} deposited in $\Delta R < core/2$)/ (total E_{T} deposited in $\Delta R < core$)

 N_{track} iso (number of tracks in the isolated region)=Number of tracks in the region: core < ΔR < 0.4

f_{track} (leading track momentum fraction) =(pT of highest pT track in core region ($\Delta R < core$)) / (Total E_T deposited in $\Delta R < core$)

 $\Delta R_{max}(Max \Delta R) = max \Delta R$ between a track and $\tau_{had-vis}$ direction in $\Delta R < core$

R_{track} (Track radius)= pT weighted average of ΔR to the $\tau_{had\text{-vis}}$ direction in $\Delta R < 0.4$

 $\mathbf{M}_{\mathrm{track}}$ (Track mass)= Invariant mass calculated using tracks in $\Delta R < 0.4$, assuming pion mass for each track

f_{track} (leading track momentum fraction)

=(pT of highest pT track in core region ($\triangle R < core$)) / (Total E_{T} deposited in $\triangle R < core$)

$AR_{max}(Max AR) = max AR$ between a track and $\tau_{had-vis}$ direction in AR < core

R_{track} (Track radius)= pT weighted average of ΔR to the $\tau_{had\text{-vis}}$ direction in $\Delta R < 0.4$

M_{track}(Track mass)

= Invariant mass calculated using tracks in $\triangle R < 0.4$, assuming pion mass for each track

 f_{cent} (Central energy Fraction)= (total E_{T} deposited in ΔR < core/2)/ (total E_{T} deposited in ΔR < core)

Boosted W → dijet studies

Sample: Z'(10TeV) → WW

(64 layers of HCAL used)

Radial distribution of calorimeter hits

Soft drop declustering condition: Given a jet of radius R_0 with only two constituents, the soft drop procedure removes the softer constituent unless:

$$\min(pT_1, pT_2)/(pT_1 + pT_2) > z_{cut} * (\Delta R_{12}/R_0)^{\beta}$$

Jet response: P(rec) -P(gen)/P(gen)

Shift for PFA jets is due to tracking or imaging HCAL? (under investigation)

Conclusion

- Progress with the Geant4 simulation to understand calorimeter reponse for multi-TeV particles
- Several physics processes in the boosted regime (Z' to WW, ττ, qq) after full simulations are available
- Preliminary studies of boosted hadronic taus (at 500 GeV) and W's (at 5 TeV) have been presented
- Reasonable agreement between truth-level and detector-level tau identification variables
- Designing a calorimeter which will better match the FCC-hh specifications

End